Association of nucleophosmin negatively regulates CXCR4-mediated G protein activation and chemotaxis.
نویسندگان
چکیده
CXCR4, the primary receptor for CXCL12, plays a critical role in the development of hematopoietic, vascular, central nervous, and immune systems by mediating directional migration of precursor cells. This mechanism promotes homing of tumor cells to metastatic sites that secrete CXCL12, and CXCR4 expression is a negative prognostic factor in acute myelogenous leukemia (AML). To elucidate mechanisms that regulate CXCR4 signaling, we used a proteomic approach to identify proteins physically associated with CXCR4. Analysis of CXCR4 immune complexes identified nucleophosmin (NPM), which was confirmed by reciprocal coimmunoprecipitation for NPM. Constitutively active CXCR4 variants bound higher levels of NPM than the wild-type receptor, which was reversed by T140, an inverse agonist. NPM binding to CXCR4 localized interactions to the C terminus and cytoplasmic loop (CL)-3, but not CL-1 or CL-2. Alanine scanning mutagenesis demonstrated that positively charged amino acids in CL-3 were critical for NPM binding. Recombinant NPM decreased GTP binding in membrane fractions after activation of CXCR4 by CXCL12. Suppression of NPM expression enhanced chemotactic responses to CXCL12, and, conversely, overexpression of a cytosolic NPM mutant reduced chemotaxis induced by CXCL12. This study provides evidence for a novel role for NPM as a negative regulator of CXCR4 signaling induced by CXCL12 that may be relevant to the biology of AML.
منابع مشابه
Differential regulation of CXCR4-mediated T-cell chemotaxis and mitogen-activated protein kinase activation by the membrane tyrosine phosphatase, CD45.
The chemokine receptor CXCR4 and its cognate ligand, stromal cell-derived factor-1alpha (CXCL12), regulate lymphocyte trafficking and play an important role in host immune surveillance. However, the molecular mechanisms involved in CXCL12-induced and CXCR4-mediated chemotaxis of T-lymphocytes are not completely elucidated. In the present study, we examined the role of the membrane tyrosine phos...
متن کاملCXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling.
The stromal cell-derived factor-1/CXCL12 chemokine engages the CXCR4 and CXCR7 receptors and regulates homeostatic and pathologic processes, including organogenesis, leukocyte homeostasis, and tumorigenesis. Both receptors are widely expressed in mammalian cells, but how they cooperate to respond to CXCL12 is not well understood. Here, we show that CXCR7 per se does not trigger G(alphai) protei...
متن کاملSimultaneous Activation of Induced Heterodimerization between CXCR4 Chemokine Receptor and Cannabinoid Receptor 2 (CB2) Reveals a Mechanism for Regulation of Tumor Progression.
The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or d...
متن کاملKisspeptin-10-induced signaling of GPR54 negatively regulates chemotactic responses mediated by CXCR4: a potential mechanism for the metastasis suppressor activity of kisspeptins.
The product of the KiSS-1 gene is absent or expressed at low level in metastatic melanoma and breast cancer compared with their nonmetastatic counterparts. A polypeptide derived from the KiSS-1 product, designated kisspeptin-10 (Kp-10), activates a receptor coupled to Galphaq subunits (GPR54 or KiSS-1R). To study the mechanism by which Kp-10 antagonizes metastatic spread, the effect on CXCR4-me...
متن کاملPTEN inhibits CXCR4-mediated chemotaxis 1 Negative regulation of CXCR4-mediated chemotaxis by the lipid phosphatase activity of tumor suppressor PTEN
PTEN, a multifunctional tumor suppressor, has been shown to play a regulatory role in cell migration. D. discoideum cells lacking PTEN exhibited impaired migration towards chemoattractant gradients. In the present study, we investigated the involvement of PTEN in chemotaxis of mammalian cells by examining PTEN-null Jurkat T cells. We observed that, in contrast to observations made in D. discoid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 72 5 شماره
صفحات -
تاریخ انتشار 2007